Soldering Guide for Zeal 8-bit Computer

Assembling your own Zeal 8-bit computer!

all components are carefully

packed and shipped in

an anti static container

This guide will walk you through the process of soldering the components provided in your "lunchbox" to create a fully functional computer system.

By following this guide from start to end, you'll not only assemble a functional Zeal 8-bit computer but also gain valuable skills and knowledge applicable to your future electronic projects! **UPDATE 01 Aug 2024**

The layout of the motherboard v1.3.1 is slightly different from other versions (one more diode, more 2pin jumpers in v1.3.1), but the soldering principles are the same, so you can still refer to this soldering guide.

Tools Required

Before starting, make sure you have the following tools:

- A multimeter with continuity mode
- A soldering iron or soldering station, preferably with adjustable temperature controller
- Solder, ideally Sn63/Pb37 or Sn60/Pb40
- A small wire cutters, with safety glasses
- A heat-resistant work surface, for example, a silicone soldering mat

Nice to have:

- Some solder wick or a desoldering pump, in case any mistake is made and you need to remove a component
- A PCB holder
- 🕻 Some flux

Here is the list of electronics components you will receive

Part List 1

Name	Designator	Qty	Category	Package	Description
Z84C0010	U2*	1	IC	PLCC44	Zilog Z80 CPU
Z84C2010	U5*	1	IC	PLCC44	Zilog Z80 PIO
SST39SF020	U4*	1	IC	PLCC32	256KB NOR Flash
AS6C4008	U3*	1	IC	DIP-32	512KB static RAM
(AT)F16V8/ GAL16V8	U6*	1	IC	DIP-20	Programmable Logic Device, used as the logic glue
74HC541	U10*	1	IC	DIP-20	8-bit buffer
74HC670	U8, U9*	2	IC	DIP-16	16-bit static RAM
74HC595	U11, U12*	2	IC	DIP-16	8-bit shift register
AT24C512/24LC 256	U14*	1	IC	DIP-8	I2C EEPROM
DS1307	U13*	1	IC	DIP-8	I2C Real-Time Clock
74LS07	U15*	1	IC	DIP-14	8-bit open-drain buffer
74HC14	U7*	1	IC	DIP-14	Hex inverter
MCP130-450 DI/ TO	U1	1	IC	TO-92	Reset supervisor
PLCC44 socket	U2, U5	2	Socket	/	
PLCC32 socket	U4	1	Socket	/	
DIP-32 socket	U3	1	Socket	DIP-32	
DIP-20 socket	U6, U10	2	Socket	DIP-20	
DIP-16 socket	U8, U9, U11, U12	4	Socket	DIP-16	
DIP-14 socket	U7, U15	2	Socket	DIP-14	
DIP-8 socket	U13, U14	2	Socket	DIP-8	
Fuse holder	F1	1	Socket	/	SMD
Battery holder	BT1	1	Socket	/	CR2025/2032 battery socket

Here is the list of electronics components you will receive

Part List 2

Name	Designator	Qty	Category	Package	Description
USB-C 2-pin	J1	1	Connector	/	Power
2x25 pin socket (90 deg)	J2	1	Connector	/	Extension port
2x8 pin socket (90 deg)	JЗ	1	Connector	/	User port
PS/2 port	J4	1	Connector	Mini-DIN	PS/2 keyboard port
5-pin pin header	J5	1	Connector	XH2.54	Internal I2C connector
6-pin switch	SW1	1	Switch	/	Power switch
4-pin switch	SW2	1	Switch	/	Reset switch
2-pin jumper	JP1, JP2	2	Jumper	/	Optional features
3-pin jumper (w/ cap)	JP3, JP4	2	Jumper	/	interrupts selector
10MHz active oscillator	X1	1	Oscillator	DIP-4	CPU clock
32.768KHz crystal oscillator	Y1	1	Oscillator	/	RTC oscillator, capacitance of 12.5pF
1 kΩ resistor	R1, R3, R4, R5	4	Resistor	/	
512 Ω resistor	R6, R7	2	Resistor	/	
2 kΩ resistor	R8	1	Resistor	/	
470 Ω resistor	R9	1	Resistor	/	
20 kΩ resistor	R10	1	Resistor	/	
10 kΩ resistor	R11	1	Resistor	/	
1 kΩ resistor network	RN1, RN2	2	Resistor Network	SIP-9	
4.7 kΩ resistor network	RN3	1	Resistor Network	SIP-7	
1N4148 Diode	D2, D3	2	Diode	/	
5mm LED	D1	1	Diode	/	
100nF capacitor	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16	16	Capacitor	/	Bypass capacitor
100nF capacitor (rounded)	C17, C17	2	Capacitor	/	Filters for PS/2 protocol
M2 13+3mm screw	/	4	screw	/	/
M2 4mm cap	/	4	сар	/	/

The first step is to install the resistors. You can use the 5 bands marked on them to identify their values. If you cannot read the bands, or if you lost the annotation they came with, use a multimeter in resistor mode to get their values.

On motherboards v1.2.0 and below, resistor R2 must be left unpopulated, hence it's absence from the table.

Bend the resistors' legs and put them in their spot. After placing them, return the board and solder them all.

"After soldering the resistors, put on safety glasses, use wire cutters to trim their legs. Cut the legs close to the soldering point without leaving any extra bits that could scratch your hand when touching the board's underside.

Now come the 1N4148 diodes, the process is similar, start by bending the legs and placing them in their sport. Be careful, the diodes must be placed in the right direction!

The K on the motherboard corresponds to the black part of the diode:

UPDATE 01 Aug 2024 There is one more diode in PCB v1.3.1

- Place the socket of each DIP integrate circuit in their respective spot. Make sure that the "U" shape at the top of each socket matches with the U shape present on the PCB silkscreen
- 2 Flip the board¹
- ③ Solder the top left and bottom right pads of each socket
- ④ Flip the board back to make sure that all the sockets are in the right direction and that none of them is poorly inserted. If any is not inserted properly, press on it with one hand while passing the soldering iron on its two soldered pins with the other hand
- (5) After checking that all the sockets are placed correctly, proceed to soldering the rest of the pins.

Tip: Using kapton tape, blu-tak or a hard surface can help you keeping the sockets in place before flipping the board. If you don't manage to get all the sockets in place when flipping the board, it is okay, solder them one by one!

2.54mm Connectors

- 1 Place the extension port, which is a standard 2.54mm 2x25 pins connector, and the user port, which is a standard 2.54mm 2x08 pins connector, on the PCB
- (2) Flip the board. Since there are only two connectors on the same side, it should be easier than previously.
- ③Similarly to the previous step, solder the top left and bottom right pins just to make sure everything is correct. Afterwards, proceed to soldering the rest.

the components

solder the diagonal pins to stabilizer the boards

All soldered !

(1) Place the PLCC sockets in their respective spots. There should be two PLCC44 sockets, the right one on the PCB being the Z80 CPU and the left one being the Z80 PIO, and one PLCC32 socket, which is for the NOR Flash.

2 Proceed to the same steps as before: flip the board, solder few pins, perform a visual inspection and proceed to the rest.

This part may be the trickiest since the fuse holder is an SMD component.

- ① Put some solder on the top pad
- 2 Heat up the solder on that pad so that it is liquid, while placing in the fuse
- ③ Once placed properly, remove the soldering iron, the holder should be soldered on that pad
- ④ Heat up the other part of the holder (be careful to no melt the plastic) while putting some solder underneath

- ① Once soldered, place the 1A fuse inside
- 2 Put your multimeter in continuity mode and make sure that the two pads shown in the following picture are connected:

Now comes the USB-C connector, it shall be placed in **J1**, at the top left of the PCB. ITs legs are not very long, so when soldering, you should let the solder enter inside the holes. The resulting joints should look like the following:

The LED is located just next to the USB-C connector. Just like the other diodes, the direction is important: the long leg is the positive side (anode) and the short leg is the negative side (cathode).

On the PCB, the silkscreen is rounded on the positive side and straight on the negative side.

The picture shows the direction of the LED.

The PS/2 connector, referenced J4, must be soldered just by the LED.

It can be tricky to make it enter its footprint if the pins are not straight, if that's your case, bend the pins a bit and try again.

Note: this picture only shows where the connector sits, not its direction

Despite being the tallest component, the power switch is the next one, the idea is to have a way to test if the board is already working.

The power switch will make contact between the following pads on the PCB:

The right position for is as shown in the picture below, the small square at the bottom should be close to the fuse (do not follow the silkscreen on the PCB)

Test Now!

Once the power switch is in place and soldered, it's time for the first test!

 Make sure there is no short by putting the multimeter in continuity mode and testing +5V and GND pins. The first one corresponds to bottom pad of the fuse, while the latter is located on the USB-C connector shield. Of course, they which must NOT be shorted.

- 2 If the previous step was a success, plug a USB-C cable and a power supply (a USB phone power supply preferably)
- ③ Press the power switch, the LED should light up!
- ④ Power off the board and unplug the USB cable

The 10MHz active oscillator sits in the footprint marked X1, on the right side of the board.

The squared side of it should be located at the bottom left, just like shown on the PCB. It should look like this:

There are three resistor networks on the board: two $10k\Omega$ one referenced RN1 and RN2, and a third one of $4.7k\Omega$ referenced RN3.

The small dot present on their marking shows their direction: this dot shall be in the square pin on the PCB silkscreen.

The crystal oscillator has a lower frequency (~32KHz) than the previous active oscillator. Its role is to provide a clock signal to the Real-Time Clock, to let it count the elapsed time.

The footprint, referenced Y1, shows how it should be soldered. There is no direction this time for this component.

After soldering the two legs, apply some solder between the oscillator case and the footprint on the top of the PCB. It will guarantee that the case is connected to *GND*.

The board presents 4 jumpers. The jumpers JP3 and JP4 are three-pin wide and are **mandatory**, they are responsible for enabling or disabling the interrupt signals from the video board connector to the Zilog Z80 PIO. They must be soldered and connected as follows:

Putting the caps on the right side wil disabled the video interrupts.

The two other jumpers are two-pin wide, referenced JP2 and JP1. The first one is used to catch the square signal from the RTC chip (check the documentation for more info), and the second one is used to enable the 512KB range for the NOR Flash (when installed) instead of the default 256KB range. They can be omitted if you are not going to use any of these features.

Internal I2C connector, reset switch and battery connector

The internal I2C connector, a standard XH 2.54mm connector, should be soldered with the lock on the right.

The reset switch can only be plugged in a single direction. For the battery connector, follow the footprint on the board.

Reset supervisor and second test!

The reset supervisor component, referenced U1 is the only integrated circuit that doesn't sit on a socket. Its package resembles the very common NPN transistors', the TO-92 package. It is responsible for generating a reset signal when the power is connected to the board or when the voltage drops suddenly.

The middle pin must be bent to the back (the front being the flat surface), just like the picture above

After soldering it, you should get something like the following:

PS/2-related capacitors Decoupling Capacitor

The PS/2 protocol decoding requires two 100nF ceramic capacitors, which are the two rounded orange ones provided in the kit.

The last soldering step is to solder all the decoupling capacitors, which are also 100nF ones. They are marked with Cxx footprints on the PCB.

They must be soldered in footprints marked C17 and C18. They can be put in not particular direction.

There are quite a few of them so take your time and make sure to cut their legs after finishing soldering them.

End result after soldering

Now you can test the board like we did twice previously, if there is no short and the LED is lighting up, you can start populating the board with the integrated circuits!

Populating!

It's now time to put the components in their respective socket!

This part is much easier than the soldering one, there are two important things to remember when you are going to plug in the components:

1. Make sure the components are put in the right direction. For the PLCC components, the squared ones, there is a dot on the top, that shall be placed as close as possible to the socket's dot, located on the top left corner. The following picture takes the Z80 CPU as an example:

For the DIP components, there is a small $*u^*$ at the top that shall match the $*u^*$ marking present on both the socket and the PCB silkscreen, as shown on the picture on the left:

When inserting the components, mainly the DIP ones, **do not force** if only few pins entered the socket, else you can end up when bent pins, or worse, broken pins!

Populating!

To straighten the pins, you can make the use of a pin straightener, such device can also be 3D printed. If you don't have such tool, you can put your component on its side on a flat surface and push a bit to make sure all the pins are bent at the same time. Again, do not force too much or it would result in bent or broken pins.

To know which components must be placed in which socket, you can refer to the names at the bottom of the sockets on the PCB, or, the component list present at the beginning on this guide.

After placing all the components, you can continue to the: <u>http://</u> zeal8bit.com/getting-started/

Troubleshooting Tips Additional Resources

Cold Joints

Joints that appear dull or grainy may indicate insufficient heat during soldering. Reheat and apply additional solder if needed.

Solder Bridges

If solder forms a bridge between two connections, use desoldering wick or a desoldering pump to remove the excess solder.

Additional Resources

For more detailed soldering techniques or troubleshooting, refer to the: zeal8bit.com

Why do we need to test the board that many times while soldering?

The idea is to be sure that the board works and that there is no shortcircuit. If a short appears later, it will be easy to discriminate which components could potentially be the problem.

After soldering the capacitors, I have a short-circuit between GND and Vcc! What should I do?

First of all, make sure that there is no solder bridge on the board. If no short was present before soldering the capacitors, then one of the capacitor may be bad, try to find it and desolder it. This can be done with the multimeter in resistor mode, the closer you are to the short, the less the resistance should be.

Do **NOT** try to power on the board if a short is present.

I powered on the board, LED turn on for a split second and turned off directly, why?

The first suspect is the fuse, use a multimeter in continuity mode to check if it blew up, if this is the case, it means that there is a shortcircuit on the board. You will have to fix it first (check the answer above) and then replace the fuse. Do **NOT** bypass the fuse since its role is to protect the integrated circuits. By omitting it, all the components on the board would get damaged in case of a short-circuit.

I soldered the board, and placed all the components, what should I do now?

Congratulations for this! The PLD and the ROM are pre-flashed already, so you can proceed to the regular procedure that you can find here: https://zeal8bit.com/getting-started.

When I power on the board, nothing appears on the UART, why?

FAQ

This means that the something is wrong with the integrated circuits, make sure they are all inserted in the right direction (check the ICs top tab), they are in the right socket, which should be soldered properly.

When I type a key on the keyboard, multiple characters appear instead of one, why?

The PS/2 protocol decoding is done with discrete logic and filters. The filters are made with the two 100nF rounded ceramic capacitors: **C17** and **C18**. Capacitors value is not something very precise, in some cases, it is off, so the solution is to replace one or both capacitors. The kit contains a few extra capacitors

Buy it now: https://www.tindie.com/stores/zeal8bit/

Contact: contact@zeal8bit.com

Resources: zeal8bit.com https://github.com/Zeal8bit

Join the community:

Youtube: <u>https://www.youtube.com/@zeal8bit</u> Twitter: <u>https://twitter.com/zeal8bit</u> Discord: <u>https://discord.gg/CtyGsSkzDY</u>

Copyright © 2024 Zeal 8-bit. All rights reserved